Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.2.3.20. Let $\operatorname{\mathcal{C}}= \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}}_0 )$ be the nerve of an ordinary category $\operatorname{\mathcal{C}}_0$. Then a collection of morphisms of $\operatorname{\mathcal{C}}$ is weakly saturated (in the sense of Definition 9.2.3.19) if and only if is weakly saturated when regarded as a collection of morphisms of $\operatorname{\mathcal{C}}_0$ (in the sense of Definition 1.5.4.12).