Example 9.3.2.24. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $C \in \operatorname{\mathcal{C}}$ be an object, and let $W$ be the collection of all morphisms $w: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$ such that $C$ is weakly $w$-local. Then $W$ is weakly saturated. This follows from Proposition 9.3.2.14, Variant 9.3.2.13, and Proposition 9.3.2.20.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$