Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Construction 9.2.7.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\sigma :$

\[ \xymatrix@R =50pt@C=50pt{ A \ar [d]^{f} \ar [r] & X \ar [d]^{g} \\ B \ar [r] \ar@ {-->}[ur] & Y } \]

be a lifting problem in $\operatorname{\mathcal{C}}$. Then $\sigma $ determines a pair of objects $\widetilde{B}$, $\widetilde{X}$ in the $\infty $-category $\operatorname{\mathcal{C}}_{A/ \, / Y }$ (see Remark 9.2.5.7). Let $K$ denote the morphism space $\operatorname{Hom}_{ \operatorname{\mathcal{C}}_{A/ \, /Y} }( \widetilde{B}, \widetilde{X} )$. We then have a tautological map $K \times \Delta ^1 \rightarrow \operatorname{\mathcal{C}}_{A/ \, /Y}$, which we can identify with a diagram $\{ A\} \star (K \times \Delta ^1) \star \{ Y\} \rightarrow \operatorname{\mathcal{C}}$. Composing with the quotient map

\[ K \times \Delta ^3 \simeq K \times ( \{ A\} \star \Delta ^1 \star \{ Y\} ) \twoheadrightarrow \{ A\} \star (K \times \Delta ^1) \star \{ Y\} , \]

we obtain a morphism $K \rightarrow \operatorname{Fun}( \Delta ^3, \operatorname{\mathcal{C}})$, which factors through the simplicial subset $\operatorname{Sol}(\sigma ) \subseteq \operatorname{Fun}(\Delta ^3, \operatorname{\mathcal{C}})$ of Construction 9.2.7.1. We therefore obtain a comparison map $\theta : \operatorname{Hom}_{ \operatorname{\mathcal{C}}_{A/ \, /Y} }( \widetilde{B}, \widetilde{X} ) \rightarrow \operatorname{Sol}( \sigma )$.