Proposition 9.2.7.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\sigma :$
be a lifting problem in $\operatorname{\mathcal{C}}$. Then the comparison map
of Construction 9.2.7.10 is a homotopy equivalence of Kan complexes.
Proposition 9.2.7.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\sigma :$
be a lifting problem in $\operatorname{\mathcal{C}}$. Then the comparison map
of Construction 9.2.7.10 is a homotopy equivalence of Kan complexes.
Proof. Corollary 4.6.6.9 supplies a categorical pullback diagram of $\infty $-categories
where the vertical maps are isofibrations (Corollary 4.4.5.3). Unwinding the definitions, we see that the comparison map $\theta $ is obtained by taking vertical fibers over the vertex corresponding to the pair $( \widetilde{B}, \widetilde{X} )$. Corollary 4.5.2.31 guarantees that $\theta $ is an equivalence of $\infty $-categories. Since the source and target of $\theta $ are Kan complexes (Remark 9.2.7.3), it is a homotopy equivalence (Example 4.5.1.13). $\square$