Theorem 9.2.9.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $S_{L}$ and $S_{R}$ be collections of morphisms of $\operatorname{\mathcal{C}}$, and let $\operatorname{Fun}_{LR}( \Delta ^2, \operatorname{\mathcal{C}}) \subseteq \operatorname{Fun}(\Delta ^2, \operatorname{\mathcal{C}})$ be the full subcategory of Notation 9.2.8.1. Then $(S_ L, S_ R)$ is a factorization system on $\operatorname{\mathcal{C}}$ if and only if it satisfies the following conditions:
- $(1)$
The restriction map
\[ D: \operatorname{Fun}_{LR}( \Delta ^2, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}}) \quad \quad \sigma \mapsto d^{2}_{1}(\sigma ) \]is an equivalence of $\infty $-categories.
- $(2)$
Every identity morphism of $\operatorname{\mathcal{C}}$ is contained in both $S_ L$ and $S_ R$.
- $(3)$
The collections $S_ L$ and $S_ R$ are closed under isomorphism (in the $\infty $-category $\operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}})$).