Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 10.2.2.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $q: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram, and let $\widetilde{f}: \widetilde{X} \rightarrow \widetilde{Y}$ be a morphism in the $\infty $-category $\operatorname{\mathcal{C}}_{/q}$ having image $f: X \rightarrow Y$ in $\operatorname{\mathcal{C}}$. If $f$ is a quotient morphism in $\operatorname{\mathcal{C}}$, then $\widetilde{f}$ is a quotient morphism in $\operatorname{\mathcal{C}}_{/q}$.

Proof. Set $\widetilde{\operatorname{\mathcal{C}}} = \operatorname{\mathcal{C}}_{/q}$, so that we have a commutative diagram of forgetful functors

\[ \xymatrix@R =50pt@C=50pt{ \widetilde{\operatorname{\mathcal{C}}}_{ / \widetilde{Y} } \ar [d]^{ \widetilde{U} } \ar [r]^-{V'} & \operatorname{\mathcal{C}}_{/Y} \ar [d]^{U} \\ \widetilde{\operatorname{\mathcal{C}}} \ar [r]^-{V} & \operatorname{\mathcal{C}}. } \]

Let $\operatorname{\mathcal{C}}^{0}_{ / Y } \subseteq \operatorname{\mathcal{C}}_{/Y}$ denote the sieve generated by $f$, so that $\widetilde{\operatorname{\mathcal{C}}}^{0}_{ / \widetilde{Y} } = V'^{-1} \operatorname{\mathcal{C}}^{0}_{/Y}$ is the sieve generated by $\widetilde{f}$. Note that $V$ is a right fibration (Proposition 4.3.6.1), so that $V'$ is a trivial Kan fibration (Corollary 4.3.7.13). In particular, the induced map $\widetilde{\operatorname{\mathcal{C}}}^{0}_{/ \widetilde{Y} } \rightarrow \operatorname{\mathcal{C}}^{0}_{/Y}$ is a trivial Kan fibration, and therefore right cofinal (Corollary 7.2.1.13). Combining our assumption that $f$ is a quotient morphism with Corollary 7.2.2.3, we deduce that the composite functor

\[ ( \widetilde{\operatorname{\mathcal{C}}}_{ / \widetilde{Y}}^{0} )^{\triangleright } \hookrightarrow ( \widetilde{\operatorname{\mathcal{C}}}_{/\widetilde{Y}})^{\triangleright } \rightarrow \widetilde{\operatorname{\mathcal{C}}} \xrightarrow {V} \operatorname{\mathcal{C}} \]

is a colimit diagram in the $\infty $-category $\operatorname{\mathcal{C}}$. Since the functor $V$ is conservative and creates colimits (Proposition 7.1.3.19), we conclude that $\widetilde{f}$ is a quotient morphism. $\square$