Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 10.3.3.20. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{C}}$. If $\operatorname{\mathcal{C}}$ has images, the following conditions are equivalent:

$(1)$

The morphism $f$ is a quotient morphism.

$(2)$

The morphism $f$ is left orthogonal to every monomorphism in $\operatorname{\mathcal{C}}$.

$(3)$

The morphism $f$ is weakly left orthogonal to every monomorphism in $\operatorname{\mathcal{C}}$.