Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 10.3.4.9. Let $X$ and $Y$ be sets, and let $f: X \rightarrow Y$ be a function. The following conditions are equivalent:

$(1)$

The function $f$ is a universal quotient morphism in the category of sets.

$(2)$

The function $f$ is a quotient morphism in the category of sets.

$(3)$

The function $f$ is surjective.

Proof. The implication $(1) \Rightarrow (2)$ follows from Remark 10.3.4.2 and the equivalence $(2) \Leftrightarrow (3)$ follows from Example 10.3.2.8. Since the collection of surjections is closed under pullbacks, Corollary 10.3.4.7 guarantees that $(3) \Rightarrow (1)$. $\square$