Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 10.2.5.11. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories which preserves pullbacks. Then $F$ carries monomorphisms in $\operatorname{\mathcal{C}}$ to monomorphisms in $\operatorname{\mathcal{D}}$ (Proposition 9.2.4.20). In particular, for every object $Y \in \operatorname{\mathcal{C}}$, the functor $F$ carries subobjects of $Y$ to subobjects of $F(Y)$, and therefore induces a map of partially ordered sets $\operatorname{Sub}(Y) \rightarrow \operatorname{Sub}( F(Y) )$.