Proposition 10.2.5.12. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be $\infty $-categories which have images, and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor which preserves pullback squares. The following conditions are equivalent:
- $(1)$
The functor $F$ carries quotient morphisms in $\operatorname{\mathcal{C}}$ to quotient morphisms in $\operatorname{\mathcal{D}}$.
- $(2)$
For every $2$-simplex $\sigma :$
\[ \xymatrix@C =50pt@R=50pt{ & Y_0 \ar [dr]^{i} & \\ X \ar [ur]^{q} \ar [rr]^{f} & & Y } \]in the $\infty $-category $\operatorname{\mathcal{C}}$ which exhibit $Y_0$ as an image of $f$, the $2$-simplex $F(\sigma )$ exhibits $F(Y_0)$ as an image of $F(f)$ in the $\infty $-category $\operatorname{\mathcal{D}}$.
- $(3)$
For every morphism $f: X \rightarrow Y$ in $\operatorname{\mathcal{C}}$, the map $\operatorname{Sub}(Y) \rightarrow \operatorname{Sub}( F(Y) )$ of Remark 10.2.5.11 carries $\operatorname{im}(f)$ to $\operatorname{im}( F(f) )$.