Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.3.2.3. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then:

  • An object $X \in \operatorname{\mathcal{C}}$ is discrete (in the sense of Definition 9.3.2.1) if and only if is $0$-truncated (in the sense of Definition 9.3.2.1).

  • An object $X \in \operatorname{\mathcal{C}}$ is subterminal (in the sense of Definition 9.3.2.2) if and only if it is $(-1)$-truncated.

See Examples 3.5.7.4 and 3.5.7.5.