Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 10.1.3.2. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X_{\bullet }$ be a simplicial object of $\operatorname{\mathcal{C}}$. The following conditions are equivalent:

$(1)$

The simplicial object $X_{\bullet }$ is essentially constant: that is, there exists an isomorphism of simplicial objects $\alpha : \underline{C} \rightarrow X_{\bullet }$ for some object $C \in \operatorname{\mathcal{C}}$.

$(2)$

The functor $X_{\bullet }: \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$ carries each morphism in the category $\operatorname{{\bf \Delta }}^{\operatorname{op}}$ to an isomorphism in the $\infty $-category $\operatorname{\mathcal{C}}$.

$(3)$

The functor $X_{\bullet }$ is left Kan extended from the full subcategory $\{ [0] \} \subseteq \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}} )$.

$(4)$

For every simplicial object $Y_{\bullet }$ of $\operatorname{\mathcal{C}}$, the restriction map

\[ \operatorname{Hom}_{\operatorname{Fun}( \operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}^{\operatorname{op}}), \operatorname{\mathcal{C}})}( X_{\bullet }, Y_{\bullet } ) \rightarrow \operatorname{Hom}_{\operatorname{\mathcal{C}}}( X_{0}, Y_0 ) \]

is a homotopy equivalence.

Proof. The equivalences $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ are special cases of Corollary 7.3.3.14, since $[0]$ is a final object of the category $\operatorname{{\bf \Delta }}$. The equivalence $(3) \Leftrightarrow (4)$ follows from Corollary 7.3.6.13. $\square$