Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 9.1.9.10. Let $\kappa $ and $\lambda $ be regular cardinals satisfying $\kappa \triangleleft \lambda $. For every $\infty $-category $\operatorname{\mathcal{C}}$, the following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits $\lambda $-small $\kappa $-filtered colimits.

$(2)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits $\operatorname{N}_{\bullet }(A)$-indexed colimits, for every $\lambda $-small $\kappa $-directed partially ordered set $(A, \leq )$.

Moreover, if these conditions are satisfied, then a functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is $(\kappa ,\lambda )$-finitary if and only if it preserves $\operatorname{N}_{\bullet }(A)$-indexed colimits, for every $\lambda $-small $\kappa $-directed partially ordered set $(A, \leq )$.

Proof. The implication $(1) \Rightarrow (2)$ follows from Example 9.1.1.7, and the reverse implication follows by combining Theorem 9.1.8.7 with Corollary 7.2.2.12. The final assertion follows from Corollary 7.2.2.3. $\square$