Remark 9.2.2.14. Following the convention of Remark 4.7.0.5, a regular cardinal $\kappa $ is small if it satisfies $\kappa < \operatorname{\textnormal{\cjRL {t}}}$, for some fixed strongly inaccessible cardinal $\operatorname{\textnormal{\cjRL {t}}}$. If $\operatorname{\mathcal{C}}$ is an $\infty $-category which admits small $\kappa $-filtered colimits, then an object $C \in \operatorname{\mathcal{C}}$ is $\kappa $-compact (in the sense of Definition 9.2.2.6) if and only if it is $(\kappa , \operatorname{\textnormal{\cjRL {t}}})$-compact (in the sense of Definition 9.2.2.12. In particular, if $\operatorname{\mathcal{C}}$ admits small filtered colimits, then an object $C \in \operatorname{\mathcal{C}}$ is compact if and only if it is $(\aleph _0, \operatorname{\textnormal{\cjRL {t}}})$-compact.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$