Example 9.2.2.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be a regular cardinal. Assume either that $\kappa = \aleph _0$ or that $\operatorname{\mathcal{C}}$ is idempotent complete, so that $\operatorname{\mathcal{C}}$ admits $\kappa $-small $\kappa $-filtered colimits. Then any object $C \in \operatorname{\mathcal{C}}$ is $(\kappa ,\kappa )$-compact. See Proposition 9.1.9.17.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$