Example 9.2.2.16. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits sequential colimits. Then an object $C \in \operatorname{\mathcal{C}}$ is $(\aleph _0, \aleph _1)$-compact if and only if the corepresentable functor $\operatorname{Hom}_{\operatorname{\mathcal{C}}}( C, \bullet )$ commutes with sequential colimits. See Variant 9.1.9.11.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$