Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.2.2.17 (Monotonicity). Let $\kappa \leq \lambda $ be regular cardinals, let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits $\lambda $-small $\kappa $-filtered colimits, and let $C$ be an object which is $(\kappa ,\lambda )$-compact. Then $C$ is also $(\kappa ',\lambda ')$-compact for all regular cardinals $\kappa '$ and $\lambda '$ satisfying $\kappa \leq \kappa ' \leq \lambda ' \leq \lambda $. See Remark 9.1.9.18.