Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.2.6.9. Let $\kappa $ be a small regular cardinal and let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ is $\kappa $-compactly generated.

$(2)$

There exists a functor of $\infty $-categories $\operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{C}}$ which exhibits $\operatorname{\mathcal{C}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{C}}'$ (Definition 9.2.1.4).

$(3)$

There exists a full subcategory $\operatorname{\mathcal{C}}_0 \subseteq \operatorname{\mathcal{C}}$ for which the inclusion functor $\operatorname{\mathcal{C}}_0 \hookrightarrow \operatorname{\mathcal{C}}$ exhibits $\operatorname{\mathcal{C}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{C}}_0$.

Moreover, if these conditions are satisfied, then we can take $\operatorname{\mathcal{C}}_0 = \operatorname{\mathcal{C}}_{< \kappa }$ to be the full subcategory of $\operatorname{\mathcal{C}}$ spanned by the $\kappa $-compact objects.

Proof. Apply Proposition 9.2.6.8 in the special case where $\lambda = \operatorname{\textnormal{\cjRL {t}}}$ is a strongly inaccessible cardinal (Remark 9.2.6.6). $\square$