Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.2.6.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ is compactly generated.

$(2)$

There exists a functor of $\infty $-categories $\operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{C}}$ which exhibits $\operatorname{\mathcal{C}}$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}'$ (Definition 9.2.1.1).

$(3)$

There exists a full subcategory $\operatorname{\mathcal{C}}_0 \subseteq \operatorname{\mathcal{C}}$ for which the inclusion functor $\operatorname{\mathcal{C}}_0 \hookrightarrow \operatorname{\mathcal{C}}$ exhibits $\operatorname{\mathcal{C}}$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}_0$.

Moreover, if these conditions are satisfied, then we can take $\operatorname{\mathcal{C}}_0 = \operatorname{\mathcal{C}}_{< \aleph _0}$ to be the full subcategory of $\operatorname{\mathcal{C}}$ spanned by the compact objects.

Proof. Apply Corollary 9.2.6.9 in the special case $\kappa = \aleph _0$ (see Example 9.2.6.4). $\square$