Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 9.2.6.16. Let $\kappa \leq \lambda $ be regular cardinals, where $\lambda $ is uncountable. Then the construction $\operatorname{\mathcal{C}}\mapsto \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ induces a bijection

\[ \xymatrix@R =50pt@C=50pt{ \{ \textnormal{Idempotent complete $\infty $-categories} \} / \textnormal{Equivalence} \ar [d]^{\sim } \\ \{ \textnormal{$(\kappa ,\lambda )$-compactly generated $\infty $-categories} \} / \textnormal{Equivalence}. } \]

Proof. Surjectivity follows from Proposition 9.2.6.8, and injectivity from Proposition 9.2.6.13. $\square$