Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.2.6.17. Let $\kappa $ be a small regular cardinal. Then the construction $\operatorname{\mathcal{C}}\mapsto \operatorname{Ind}_{\kappa }(\operatorname{\mathcal{C}})$ induces a bijection

\[ \xymatrix@R =50pt@C=50pt{ \{ \textnormal{Idempotent complete $\infty $-categories} \} / \textnormal{Equivalence} \ar [d]^{\sim } \\ \{ \textnormal{$\kappa $-compactly generated $\infty $-categories} \} / \textnormal{Equivalence}. } \]

Proof. Apply Proposition 9.2.6.16 in the special case where $\lambda = \operatorname{\textnormal{\cjRL {t}}}$ is a strongly inaccessible cardinal (Remark 9.2.6.6). $\square$