Corollary 9.2.8.20. Let $\kappa $ be a small uncountable regular cardinal. Then the inclusion functor $\operatorname{\mathcal{S}}_{< \kappa } \hookrightarrow \operatorname{\mathcal{S}}$ exhibits $\operatorname{\mathcal{S}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{S}}_{< \kappa }$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Proof. Apply Corollary 9.2.8.17 in the special case where $\lambda = \operatorname{\textnormal{\cjRL {t}}}$ is a strongly inaccessible cardinal. $\square$