Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 10.3.3.22. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing a pushout diagram

\[ \xymatrix@R =50pt@C=50pt{ X \ar [d]^{f} \ar [r] & X' \ar [d]^{f'} \\ Y \ar [r] & Y'. } \]

If $\operatorname{\mathcal{C}}$ is has images and $f$ is a quotient morphism, then $f'$ is also a quotient morphism.